Abstract

Years ago, especially in Sweden, a new family of ductile iron materials was propagated: Solid solution strengthened ferritic ductile iron. Since the 2011 edition, three grades are integrated into the European Standard EN 1563: EN-GJS-450-18, EN-GJS-500-14 and EN-GJS-600-10. The introduction of these materials into the European standard generated a large interest of many engineers, which came to a real hype meanwhile. The reason is clear: While GJS-450-18 is not very different from the standard GJS-400-15, especially the grade EN-GJS-500-14 promises to have big advantages compared to the standard grade EN-GJS-500-7. Same tensile strength, from 320 MPA to 400 MPa raised 0.2%- proof strength and from 7% to 14 % doubled elongation after fracture are very interesting properties of course and the pure ferritic structure promises a better machinability furthermore. With the higher strength grade EN-GJS-600-10 very early sceptic comments raised, because the Silicon content to reach the required strength is such high, that the risk of an embrittlement of the ferrite even at room temperature and on a tensile test bar is high. But up to now, the grade EN-GJS-500-14 has the reputation to be a high strength and very high ductile material. So, a customer of us also substituted a part from steel to EN-GJS-500-14. All calculations showed a very good performance of the parts, but as soon as in serial production field damages occurred in a manner that the parts completely broke without advance warning. The investigation of the damages showed, that the parts are not only statically and cyclically loaded, but also by strikes. Deeper investigations about strike loads confirmed, that EN-GJS-500-14 is not really ductile under these conditions. The reflection to the philosophy we had with our SiboDur-700 concept, namely to combine a moderate solid solution strengthening with a moderate strengthening by pearlite with Copper, brought us to a new high strength high ductile material we call SiboDur-500. Same strength as EN-GJS-500-14, 10 % lower in 0.2%- proof stress, slightly lower in elongation after fracture, but double to more than four times energy consumption at strike loads depending om temperature!

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.