Abstract

The aim of the work is to describe a new high-performance scintigraphic detector, derived from our previous work based on a Position Sensitive Photomultiplier Tube (PSPMT) with 256 output anodes. This detector is suitable for direct integration into multi-modality imaging systems. Indeed, the detector has been developed in order to be integrated into a pre-clinical system.The detector is based on an H9500 Hamamatsu PSPMT coupled to an LYSO pixelated scintillator and a low-energy tungsten collimator with parallel square holes. In order to limit the overall size of the device, a dedicated compact electronics has been developed. The device design was performed using Monte Carlo transport calculations to aid the development.Our results show a detector performance suitable for application on small animals. The intrinsic spatial resolution was experimentally determined to be about 1.6 mm. The measured energy resolution was ∼16% at 140 keV and the maximum recorded sensitivity was ∼76 cps/MBq. In addition, the results agree quite well with those of Monte Carlo simulations.We have successfully improved the performance of our previous detector design in order to integrate the new device into a complex system focused on pre-clinical imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.