Abstract
High-temperature superconducting (HTS) magnetic levitation (maglev) systems have been studied by various research groups regarding both experimental and modelling point of view. However, there exists a trade-off between levitation and guidance forces acting on the vehicle, especially in the case of high-speed curve negotiation. To overcome this trade-off, we proposed a multi-surface permanent magnet guideway (PMG) design, for the small-scale maglev vehicle, in which polarization of the permanent magnets (PM) changing with track segments. The HTS-PM interaction model was constructed by utilizing H-formulation implemented in COMSOL Multiphysics®. The hysteretic levitation and guiding force expressions used in the dynamic simulation have been obtained by a polynomial fit to force-displacement curves obtained by the finite element model built in COMSOL Multiphysics® environment. Also, the damping effect derived from free-fall dynamic tests is incorporated into the model to construct a more realistic simulation model. The effectiveness of the proposed track design has been validated through comparisons with Halbach-derived PMG. Finally, it can be thought that the proposed PMG design is a good candidate for the high-speed operation of a maglev system when the increased levitation and guiding stiffness values are considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.