Abstract
In this brief, a new guidance law for the defense missile of nonmaneuverable aircraft is formulated based on dynamic game considerations. First, a simple differential game of protecting a static target in 2-D, involving simple motions for the attacker and defender, is introduced. The analysis is then extended to a moving noncooperative target in 2-D, in view of the fact that a nonmaneuverable aircraft would not be able to cooperate with the defender. A heuristic solution for the game is proposed and tested, and the results of the 2-D analysis are then extended to 3-D to formulate a new guidance law for the defense missile called the command to optimal interception point (COIP) guidance law. The validity of the new guidance law is checked using trajectory and envelope simulations, built with high-fidelity 6-DOF models using the computer-aided design of aerospace concepts in C++ framework. Performance comparisons are shown between the COIP guidance law and the recently proposed airborne command to line-of-sight (A-CLOS) guidance law. The results show that the performances of COIP and A-CLOS guidance laws are almost identical in a coplanar engagement scenario, but the COIP law has the additional advantage of working with only position information, without the knowledge of motion of the players. In addition, in a noncoplanar engagement case studied, the defense missile is shown to achieve intercept using the COIP guidance law, but fails when using the A-CLOS guidance law.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.