Abstract

A new growing method for simplex-based endmember extraction algorithms (EEAs), called simplex growing algorithm (SGA), is presented in this paper. It is a sequential algorithm to find a simplex with the maximum volume every time a new vertex is added. In order to terminate this algorithm a recently developed concept, virtual dimensionality (VD), is implemented as a stopping rule to determine the number of vertices required for the algorithm to generate. The SGA improves one commonly used EEA, the N-finder algorithm (N-FINDR) developed by Winter, by including a process of growing simplexes one vertex at a time until it reaches a desired number of vertices estimated by the VD, which results in a tremendous reduction of computational complexity. Additionally, it also judiciously selects an appropriate initial vector to avoid a dilemma caused by the use of random vectors as its initial condition in the N-FINDR where the N-FINDR generally produces different sets of final endmembers if different sets of randomly generated initial endmembers are used. In order to demonstrate the performance of the proposed SGA, the N-FINDR and two other EEAs, pixel purity index, and vertex component analysis are used for comparison

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call