Abstract
Nowadays, the location privacy problem has become an important problem for the users who enjoy the location-based services (LBSs). Researchers have focused on the problem of how to protect the location privacy of user efficiently for a long time. On one hand, many achievements adopt the centralized structure in which there is an additional center server. Additionally, some other researchers adopt the distributed structure to overcome the disadvantages brought by the center server in the centralized anonymous system structure. On the other hand, the existing methods of solving the problem are always to protect the individual user’s location privacy in LBSs, without considering the user group’s location privacy. This kind of methods is not very applicable to the status of a number of users who formed a group to complete a LBS task together by collaborative computing. In order to solve the problem of location privacy protection for a user group in the untrusted mobile social networks, a location privacy protection method based on the distributed structure is discussed in this paper. In the scheme, the special homomorphic features of BGN cryptosystem are cleverly used so that it can solve the group’s three classical location service applications simultaneously, namely, group nearest neighbor query, optimal group collection point determination, and group friend’s distance query, by only one security policy. If there are k users who formed the group, it could achieve k-anonymity without exposing the coordinate of each individual user or using any anonymous areas. Furthermore, theoretical and experimental analysis proves that the proposal can efficiently protect each user’s location privacy in the group through taking full advantage of the collaborative computing and communication capabilities of the mobile terminals. It can resist the existing distance interaction attack and collusion attack and can realize the secure and efficient fine-grained controllable location privacy protection for the user group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.