Abstract

Abstract Compressed sensing (CS) has been one of the great successes of applied mathematics in the last decade. This paper proposes a new method, combining the advantage of the Compressive Sampling Matching Pursuit (CoSaMP) algorithm and the Quasi–Newton Iteration Projection (QNIP) algorithm, for the recovery of sparse signal from underdetermined linear systems. To get the new algorithm, Quasi–Newton Projection Pursuit (QNPP), the least-squares technique in CoSaMP is used to accelerate convergence speed and QNIP is modified slightly. The convergence rate of QNPP is studied, under a certain condition on the restricted isometry constant of the measurement matrix, which is smaller than that of QNIP. The fast version of QNPP is also proposed which uses the Richardson’s iteration to reduce computation time. The numerical results show that the proposed algorithms have higher recovery rate and faster convergence speed than existing techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.