Abstract
This paper proposes a new goldfish model to predict pharmacodynamic/pharmacokinetic effects of drugs used to treat motion sickness administered in differing gravity loads. The assumption of these experiments is that the vestibular system is dominant in producing motion sickness and that the visual system is secondary or of small import in the production of motion sickness. Studies will evaluate the parameter of gravity and the contribution of vision to the role of the neurovestibular system in the initiation of motion sickness with and without pharmacologic agents. Promethazine will be studied first. A comparison of data obtained in different groups of goldfish will be done (normal vs. acutely and chronically bilaterally blinded vs. sham operated). Some fish will be bilaterally blinded 10 months prior to initiation of the experiment (designated the chronically bilaterally blinded group of goldfish) to evaluate the neuroplasticity of the nervous system and the associated return of neurovestibular function. Data will be obtained under differing gravity loads with and without a pharmacological agent for motion sickness. Experiments will differentiate pharmacological effects on vision vs. neurovestibular input to motion sickness. Comparison of data obtained in the normal fish and in acutely and chronically bilaterally blinded fish with those obtained in fish with intact and denervated otoliths will differentiate if the visual or neurovestibular system is dominant in response to altered gravity and/or drugs. Experiments will contribute to validation of the goldfish as a model for humans since plasticity of the central nervous system allows astronauts to adapt to the altered visual stimulus conditions of 0-g. Space motion sickness may occur until such an adaptation is achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.