Abstract

This is a preliminary report of our on-going research on a global topographic-isostatic model. The model comes from a completely new idea — the geoid undulation is the responses of an elastic earth to the topographic mass load. Assuming the topography as a condensed surface mass load, we derive expressions for calculating the vertical displacement, potential and equipotential surface changes, based on the load theory proposed in Sun and Sjöberg (1996). The modeled geoid is composed of three parts: loading potential, surface displacement and mass redistribution. The mass redistribution of the earth compensates to some extent the topography. We mainly calculate and discuss the vertical displacements and equipotential surface changes for three depths: the earth's surface, d = 36 km and the core-mantle boundary. Numerical results show that the displacements at depth 36 km and the earth's surface have the same distribution pattern and magnitude, while the vertical movement of the core-mantle boundary appears much smoother and smaller. The modeled geoid undulations vary between −352 and +555 m. The comparison between the modeled and observed geoid undulations shows that there are strong positive correlations between them, but a compensation only by elastic deformations is not sufficient to explain the observed undulations because of the big difference in magnitude between the two geoids. More geodynamic effects should be considered to better explain the long-wavelength geoid features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call