Abstract

In an article in this issue of Environmental Microbiology, Segura et al. report the identification of an unusual global regulator in Novosphingobium sp. HR1a, a metabolically versatile bacterial strain isolated from the rhizosphere able to assimilate a wide range of polyaromatic hydrocarbons (PAHs). Physiological and transcriptomic assays suggest that this regulator, named PahT, activates the expression of genes involved in the assimilation of PAHs, and of compounds such as sugars and acetate, facilitating their co-metabolism. This effect is the opposite to the carbon catabolite repression strategy that allows metabolically versatile bacteria to favour the use of some compounds over others. PahT was found to stimulate sugar uptake and metabolization in the presence and absence of PAHs and to facilitate microaerobic respiration if PAHs were present. A survey of the genomes of several Sphingomonadaceae members showed that PahT is not present in all strains of this family, but that it is strongly associated with PAH degradation genes. Since not all PAH-degrading strains contain pahT, it seems that PahT is not essential for PAH degradation but likely provides a selective advantage to PAH-degrading strains in environments such as the rhizosphere where other potential carbon sources are available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.