Abstract

A new global kinematic-optical-thermal (KOT) model is proposed to provide a proper understanding and description of the temperature evolution during laser-assisted tape winding and placement (LATW/LATP) on any arbitrary shaped tooling geometry. Triangular facets are utilized in the kinematic model to define a generic tooling together with a user-defined fiber path and time-dependent process settings such as the tape feeding rate. The time-dependent heat flux distribution on the surfaces is calculated by the optical model and subsequently coupled to the thermal model. The numerical implementation of the developed KOT model is first verified for process simulations of the LATP on a flat tooling by comparing the temperature predictions with the available literature data. To validate the KOT model, a total of four pressure vessels are manufactured with in-line temperature measurements. The process temperature predictions are found to agree well with the measured temperature during the helical winding. The influence of the changing tooling curvature and process speed on the process temperature is found to be significant as shown by the experimental and numerical findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.