Abstract

The present paper discusses H2S removal by a new generation of sewage-sludge-derived materials which are characterized by their outstanding textural properties when compared to previous materials obtained by pyrolysis and/or activation of similar precursors. Alkaline hydroxide activation was used to prepare adsorbents/catalysts covering a wide range of porosities (SBET values from 10 to 1300 m2 g(-1)). Our results outline that textural properties are important for H2S abatement. However, not only highly porous sorbents, but also a high metallic content and a basic pH of these materials are required to achieve good performances. Proper combinations of textural properties and alkalinity render superior performances with retention values (x/M) as high as 456 mg of H2S removed per g of material. These retention capacities outperform previously published data for sewage-sludge derived materials and those achieved with commercial materials (including some activated carbons). Sulfur titration shows that most H2S is removed in the form of elemental sulfur, especially in the sewage/NaOH materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.