Abstract
A new generation of diagonal self-energy approximations in ab initio electron propagator theory for the calculation of electron removal energies of molecules and molecular ions has been derived from an intermediately normalized, Hermitized super-operator metric. These methods and widely used antecedents such as the outer valence Green's function and the approximately renormalized partial third order method are tested with respect to a dataset of vertical ionization energies generated with a valence, triple-ζ, correlation-consistent basis set and a converged series of many-body calculations whose accuracy approaches that of full configuration interaction. Several modifications of the diagonal second-order self-energy, a version of G0W0 theory based on Tamm-Dancoff excitations and several non-diagonal self-energies are also included in the tests. All new methods employ canonical Hartree-Fock orbitals. No adjustable or empirical parameters appear. A hierarchy of methods with optimal accuracy for a given level of computational efficiency is established. Several widely used diagonal self-energy methods are rendered obsolete by the new hierarchy whose members, in order of increasing accuracy, are (1) the opposite-spin non-Dyson diagonal second-order or os-nD-D2, (2) the approximately renormalized third-order quasiparticle or Q3+, (3) the renormalized third-order quasiparticle or RQ3, (4) the approximately renormalized linear third-order or L3+, and (5) the renormalized linear third-order or RL3 self-energies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.