Abstract
As the demand of exploitation and utilization of geothermal energy increases, more geothermal-related earth structures occur recently. The design of the structures depends upon an accurate prediction of soil thermal conductivity. The existing soil thermal conductivity models were mostly developed by empirical fits to datasets of soil thermal conductivity measurements. Due to the gaps in measured thermal conductivities between any two tested natural soils, the models may not provide accurate prediction for other soils, and the predicted thermal conductivity might not be continuous over the entire range of soil type. In this research, a generalized soil thermal conductivity model was proposed based on a series of laboratory experiments on sand, kaolin clay and sand–kaolin clay mixtures using a newly designed thermo-time domain reflectometry probe. The model was then validated with respect to k dry–n (thermal conductivity of dry soils and porosity) and k r–S r (normalized thermal conductivity and degree of saturation) relationships by comparing with previous experimental studies. The predicted thermal conductivities were found to be in a good agreement with the experimental data collected from both this study and the other literatures with at least 85% confidence interval. It is concluded that the proposed model accounts for the effects of both environmental factors (i.e., moisture content and dry density) and compositional factors (i.e., quartz content and soil type) on soil thermal conductivity, and it has a great potential in predicting soil thermal conductivity more accurately for geothermal applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.