Abstract
In many cases, the existence and uniqueness of the solution of a differential equation are proved using fixed point theory. In this paper, we utilize the theory of operators and ingenious techniques to investigate the well-posedness of mild solution to semilinear fractional stochastic differential equations. We first discuss some properties of a class of Volterra integral operators and then establish a new generalized Gronwall integral inequality with a double singularity. Finally, we use the properties and integral inequality to study the well-posedness of mild solution to the semilinear fractional stochastic differential equations. One sees that it is concise and effectiveness using the previous results to investigate the well-posedness of the mild solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.