Abstract

In this paper, we introduce a new generalization of the inverse Lomax distribution with one extra shape parameter, the so-called power inverse Lomax (PIL) distribution, derived by using the power transformation method. We provide a more flexible density function with right-skewed, uni-modal, and reversed J-shapes. The new three-parameter lifetime distribution capable of modeling decreasing, Reversed-J and upside-down hazard rates shapes. Some statistical properties of the PIL distribution are explored, such as quantile measure, moments, moment generating function, incomplete moments, residual life function, and entropy measure. The estimation of the model parameters is discussed using maximum likelihood, least squares, and weighted least squares methods. A simulation study is carried out to compare the efficiencies of different methods of estimation. This study indicated that the maximum likelihood estimates are more efficient than the corresponding least squares and weighted least squares estimates in approximately most of the situations Also, the mean square errors for all estimates are decreasing as the sample size increases. Further, two real data applications are provided in order to examine the flexibility of the PIL model by comparing it with some known distributions. The PIL model offers a more flexible distribution for modeling lifetime data and provides better fits than other models such as inverse Lomax, inverse Weibull, and generalized inverse Weibull.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call