Abstract
With the higher rotational speeds and loads in bearings, the gaseous cavitation becomes more and cannot be ignorable in the bearing designs. However, there is no enough research in non-equilibrium gaseous cavitation model. This paper builds a new gaseous cavitation model based on the Bunsen solubility and bubble dynamics. The equilibrium pressure is calculated by the Bunsen solubility based on the local pressure and its pressure difference with the local pressure decides the cavitation mass transfer rate in this new model for gaseous cavitation. A titling-pad journal bearing at 3000 rpm and under 299 kN load is chosen as the research object with this new model and an original equilibrium model applied. As for the minimum film thickness and bearing force balance, this new model performs in better accordance with the experiment than the equilibrium model. According to the multiphase distributions in the bearing film, the gaseous cavitation rate in this new model can simulate the non-equilibrium processes of dissolution and cavitation under the high rotational speed, which is close to the physical gaseous cavitation process. This new model is developed and applied successfully in tilting-pad journal bearings for simulating the non-equilibrium gaseous cavitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.