Abstract

In this study we developed a GC–MS method for the analysis of priority pollutants, personal care products (PCPs) and other emerging contaminants in waters using large volume injection with backflushing. Analyses are performed in the SIM/scan mode, so that in addition to the targeted organic contaminants, this method allows the simultaneous screening of non-target compounds. The scan data are analysed using Deconvolution Reporting Software (DRS) which screens the results for 934 organic contaminants. Deconvolution helps identify contaminants that are buried in the chromatogram by co-extracted materials and significantly reduces chromatographic resolution requirements, allowing shorter analysis times. All compounds have locked retention times and we can continually update and extend the mass spectral library including new compounds. Linearity and limits of detection in SIM and full-scan mode were studied. Method detection limits (MDLs) in effluent wastewater ranged in most of the cases from 1 to 36 ng/L in SIM mode and from 4 to 66 ng/L in full-scan mode; while in river water from 0.4 to 14 and 2–29 ng/L in SIM and full-scan mode, respectively. We obtained a linearity of the calibration curves over two orders of magnitude. The method has been applied to the screening of a large number of organic contaminants – not only to a subset of targets – in urban wastewaters from different wastewater treatment plants and also in river waters. Most of the target compounds were detected at concentration levels ranging from 11 to 8697 ng/L and from 7 to 1861 ng/L in effluent wastewater and river waters, respectively. Additionally, a group of 12 new compounds were automatically identified using the AMDIS and NIST libraries. Other compounds, such as the 4-amino musk xylene, a synthetic fragrance metabolite, which was not included in the databases, but has been manually searched in the full-scan chromatograms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.