Abstract
In this paper, a new fuzzy peer assessment methodology that considers vagueness and imprecision of words used throughout the evaluation process in a cooperative learning environment is proposed. Instead of numerals, words are used in the evaluation process, in order to provide greater flexibility. The proposed methodology is a synthesis of perceptual computing (Per-C) and a fuzzy ranking algorithm. Per-C is adopted because it allows uncertainties of words to be considered in the evaluation process. Meanwhile, the fuzzy ranking algorithm is deployed to obtain appropriate performance indices that reflect a student's contribution in a group, and subsequently rank the student accordingly. A case study to demonstrate the effectiveness of the proposed methodology is described. Implications of the results are analyzed and discussed. The outcomes clearly demonstrate that the proposed fuzzy peer assessment methodology can be deployed as an effective evaluation tool for cooperative learning of students.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.