Abstract

AbstractA new fully non‐hydrostatic model is presented by simulating three‐dimensional free surface flow on a vertical boundary‐fitted coordinate system. A projection method, known as pressure correction technique, is employed to solve the incompressible Euler equations. A new grid arrangement is proposed under a horizontal Cartesian grid framework and vertical boundary‐fitted coordinate system. The resulting model is relatively simple. Moreover, the discretized Poisson equation for pressure correction is symmetric and positive definite, and thus it can be solved effectively by the preconditioned conjugate gradient method. Several test cases of surface wave motion are used to demonstrate the capabilities and numerical stability of the model. Comparisons between numerical results and analytical or experimental data are presented. It is shown that the proposed model could accurately and effectively resolve the motion of short waves with only two layers, where wave shoaling, nonlinearity, dispersion, refraction, and diffraction phenomena occur. Copyright © 2010 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call