Abstract

A new functionalized fullerene C60 – thiol capped gold nanoparticle based nanocomposite using 3-amino-5-mercapto-1,2,4-triazole as the ligand was designed and synthesized following electronic structure calculation via DFT formalism. The electrostatic potential map from the DFT optimized geometry implied C60 core of the composite to remain electron deficient, and a much reduced HOMO-LUMO energy gap for the composite towards enhanced electron-transport ability was noted. Experimentally, first, fullerene-C60 was functionalized with the multipolar group containing ligand 3-amino-5-mercapto-1,2,4-triazole, making it hydrophilic and its aqueous dispersion was subsequently used to make a composite with in-situ prepared aqueous phase gold nanoparticles. The composite modified glassy carbon electrode showed electrocatalytic behaviour towards sensing of glucose, studied via cyclic voltammetry and electrochemical impedance spectroscopy. Thus, the highly stable and low onset potential non-enzymatic sensor exhibited high electro-catalytic activity and effective electron transfer from the electro-catalyst to the substrate electrode in a linear concentration range spanning over 0.025–0.8mM and a higher sensitivity response of 1.2μAmM−1cm−2 with good reproducibility, long term stability, anti-interference ability and chloride poisoning resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.