Abstract

Being lighter and stiffer than traditional metallic materials, nanocomposites have great potential to be used as structural damping materials for a variety of applications. Studies of friction damping in the nanocomposites are largely experimental, and there has been a lack of understanding of the damping mechanism in nanocomposites. A new friction model is developed to study the energy dissipation at the interface between carbon nanotube (CNT) and polymer matrix under dynamic loading. Iwan’s distributed friction model is considered in order to capture the stick/slip phenomenon at the interface. The effects of several parameters on energy dissipation are investigated, including the excitation’s frequency and amplitude, and the interaction between CNT’s ends and matrix. A compliance number is introduced to evaluate the energy dissipation for different contact interfaces. Some of the results are compared well with experimental observations in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.