Abstract
In this paper, a free energy-based formulation incorporating the effect of kinematic hardening is proposed. The formulation is able to reproduce symmetric expressions for the back stress while incorporating the multiplicative decomposition of the deformation gradient. Kinematic hardening is combined with isotropic hardening where an associative flow rule and von Mises yield criterion are applied. An accurate and trivial wise objective integration algorithm employing the exponential map is developed. In order to ensure a high convergence rate in the global iteration approach, an algorithmic tangent operator is derived. The computational algorithm is implemented and applied to a shell finite element which allows the use of complete three-dimensional constitutive laws. Robustness and efficiency of the proposed algorithm are demonstrated by numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.