Abstract

This paper proposes a new approach for choosing the regularization parameters in multi-parameter regularization methods when applied to approximate the solution of linear discrete ill-posed problems. We consider both direct methods, such as Tikhonov regularization with two or more regularization terms, and iterative methods based on the projection of a Tikhonov-regularized problem onto Krylov subspaces of increasing dimension. The latter methods regularize by choosing appropriate regularization terms and the dimension of the Krylov subspace. Our investigation focuses on selecting a proper set of regularization parameters that satisfies the discrepancy principle and maximizes a suitable quantity, whose size reflects the quality of the computed approximate solution. Theoretical results are shown and illustrated by numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.