Abstract

We propose a new framework and novel visual control system for motile cells in three-dimensional (3-D) space. Our goal is to utilize microorganisms as micro-robots in various applications by exploiting galvanotaxis (locomotor response to electrical stimulus) to actuate them. This requires automated motion control of swimming cells in 3-D space; in contrast, our previous work has been limited to 1-D or 2-D motion control on the focal plane. The system is capable of 3-D tracking and control of swimming cells by utilizing a high-speed vision system. A combination of lock-on tracking within the focal plane and automated focusing using a Depth-From-Diffraction method executed at 1-kHz frame rate ensures both detailed measurement and a large working space. Experimental results for closed-loop 3-D motion control of Paramecium cells trapped within a small 3-D region demonstrate the possibility of using microorganisms as micromachines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.