Abstract

Summary For wavefield simulation and imaging, the k-space method is one of the highly accurate wave propagation methods. However, to describe the material heterogeneity, the conventional first-order k-space method requires many mixed-domain operators, which are the most expensive part of the wave-extrapolation process. We have analyzed and summarized the problem of the conventional k-space method as symmetrical factorization of the wave propagators. Based on this analysis, we develop a new asymmetrical factorization-based k-space method that can significantly reduce the number of mixed-domain operators without compromising modeling accuracy. The elastic numerical examples demonstrate the correctness and effectiveness of our method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.