Abstract
MRI (magnetic resource imaging) has played a vital role in emerging technologies because of its non-invasion principle. MR equipment is traditional procedure being used for imaging biological structures. In medical domain, MRI is a most important tool being used for staging in clinical diagnosis that has ability to furnish rich physiological and functional information and radiation and non-ionizing nature. However, MRI is highly demanding in several clinical applications. In this paper, we have proposed a novel deep learning based method that accelerates MRI using a huge number of MR images. In proposed method, we used supervised learning approach that performs network training of given datasets. It determines the required network parameters that afford an accurate reconstruction of under-sampled acquisitions. We also designed offline based neural network (NN) that was trained to discover the relationship between MR images and K-space. All the experiments were performed over advanced NVIDIA GPUs (Tesla k80 and GTX Titan) based computers. It was observed that the proposed model outperformed and attained <0.2% error rate. With our best knowledge, our method is the best approach that can be considered as leading model in future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Advanced Computer Science and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.