Abstract

Duo to different transport mechanisms and gas storage in organic and inorganic systems, a new triple-continuum model coupling Discrete Fracture Model (DFM) was established to investigate gas flow in shale gas reservoir. Considering the multi-scale and heterogeneity of shale matrix, fractal theory was used to calculate the apparent permeability of organic and inorganic systems while multiple gas transport mechanisms such as viscous flow, Knudsen diffusion, surface diffusion, gas absorption/desorption effect and real gas effect were incorporated. This coupled mathematical model was solved by Finite Element Method (FEM) and the presented fractal apparent permeability model was validated with the experimental data. The results show that fractal characteristics of shale matrix have great impact on gas reservoir performance. The model without considering the influence of fractal characteristics could lead to underestimate gas production by approximately 17%. Viscous flow is the dominate transport mechanisms of shale gas and Knudsen diffusion has an impact on gas flow when the pressure declines. Surface diffusion should be only considered in organic systems and can be ignored. Then the results of sensitivity analysis show that the characteristic parameters of inorganic matter have a greater impact than those of organic matter and establishing a triple-continuum model with considering comprehensive effect of organic and inorganic matter is necessary. In addition, gas production would decrease as the pore fractal dimension and tortuosity fractal dimension increase, which results from the increasing number of small pores and more tortuous path for gas flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call