Abstract

A newly developed constant envelope FQPSK modem/radio architecture, which employs a modified double-jump (DJ) filter in the cross-correlated FQPSK system, is proposed for personal communications systems (PCS) and mobile satellite applications. The power efficiency and spectrum efficiency of this system are investigated in a nonlinear amplified (NLA) environment. The bit error rate (BER) performance is evaluated in a noisy Rayleigh fading channel. We demonstrate that with the simplest threshold detectors (binary robust eye diagrams in I and Q channels), this system is 4-7 dB more power efficient than the US digital cellular and Japanese Handyphone standard /spl pi//4-QPSK (50%-100% more spectrally efficient than the recently adopted wireless local area network (LAN) standard GFSK and the European standard GMSK). The results indicate that the proposed DJ filtered FQPSK is a power and spectrally efficient modem/radio technique. By selecting different system parameters, this system can be optimized for a wide range of applications in PCS and mobile satellite communications. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.