Abstract

We study the backward problem for non-linear (semilinear) parabolic partial differential equations in Hilbert spaces. The problem is severely ill-posed in the sense of Hadamard. Under a weak a priori assumption on the exact solution, we propose a new Fourier truncated regularization method for stabilising the ill-posed problem. In comparison with previous studies on solving the nonlinear backward problem, our method shows a significant improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.