Abstract

In this research, the combination of Fourier sine series and Fourier cosine series is employed to develop an analytical method for free vibration analysis of an Euler-Bernoulli beam of varying cross- section, fully or partially supported by a variable elastic foundation. The foundation stiffness and cross section of the beam are considered as arbitrary functions in the beam length direction. The idea of the proposed method is to superpose Fourier sine and Fourier cosine series to satisfy general elastically end constraints and therefore no auxiliary functions are required to supplement the Fourier series. This method provides a simple, accurate and flexible solution for various beam problems and is also able to be extended to other cases whose governing differential equations are nonlinear. Moreover, this method is applicable for plate problems with different boundary conditions if two-dimensional Fourier sine and cosine series are taken as displacement function.Numerical examples are carried out illustrating the accuracy and efficiency of the presented approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.