Abstract

Dimensionality reduction is a critical technology in the domain of pattern recognition, and linear discriminant analysis (LDA) is one of the most popular supervised dimensionality reduction methods. However, whenever its distance criterion of objective function uses $L_2$ -norm, it is sensitive to outliers. In this paper, we propose a new formulation of linear discriminant analysis via joint $L_{2,1}$ -norm minimization on objective function to induce robustness, so as to efficiently alleviate the influence of outliers and improve the robustness of proposed method. An efficient iterative algorithm is proposed to solve the optimization problem and proved to be convergent. Extensive experiments are performed on an artificial data set, on UCI data sets, and on four face data sets, which sufficiently demonstrates the efficiency of comparing to other methods and robustness to outliers of our approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.