Abstract

A new formulation is presented for the analysis of reservoir systems synthesizing concepts from the traditional stochastic theory of reservoir storage, moments analysis and reliability programming. The analysis is based on the development of the first and second moments for the stochastic storage state variable. These expressions include terms for the failure probabilities (probabilities of spill or deficit) and consider the storage bounds explicitly. Using this analysis, expected values of the storage state, variances of storage, optimal release policies and failure probabilities — useful information in the context of reservoir operations and design, can be obtained from a nonlinear programming solution. The solutions developed from studies of single reservoir operations on both an annual and monthly basis, compare favorably with those obtained from simulation. The presentation herein is directed to both traditional reservoir storage theorists who are interested in the design of a reservoir and modern reservoir analysts who are interested in the long term operation of reservoirs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.