Abstract

Abstract Spanning trees are fundamental structures in graph theory. Furthermore, computing them is a central part in many relevant algorithms, used in either practical or theoretical applications. The classical Minimum Spanning Tree problem is solvable in polynomial time but almost all of its variants are NP-Hard. In this paper, a novel polynomial size mixed integer linear programming formulation is introduced for spanning trees. This formulation is based on a new characterization we propose for acyclic graphs. Preliminary computational results show that this formulation is capable of solving small instances of the diameter constrained minimum spanning tree problem. It should be possible to strengthen the formulation to tackle larger instances of that problem. Additionally, our spanning tree formulation may prove to be a more effective model for some related applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.