Abstract

In this paper, a new formulation and an efficient numerical technique are preliminarily studied for a nonisothermal, anisotropic, two-phase transport model of PEMFC, where flow, species, charge and energy equations are all addressed. The importance of water and temperature management are investigated in the anisotropic and nonisothermal point of view. Due to the employment of multi-phase mixture (M2) model, the diffusivity of water transport presents the significant discontinuity and degeneracy across the interface of single gas phase region and two-phase region. In addition, the distinct discontinuity of water diffusivity also emerges through the membrane. Such discontinuities and degeneracy of water diffusivity challenge the fast convergence of nonlinear iteration in numerical simulation, showing oscillating and even divergent iteration process. Based on an intensive new formulation of M2 model for PEMFC, an efficient numerical technique, Kirchhoff transformation, is specifically employed in order to overcome such numerical difficulties and achieve fast and convergent simulation. Numerical experiment is implemented accordingly to indicate the efficiency of the presented numerical technique, in contrast to the oscillating iterations without new numerical technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.