Abstract

Recently, we introduced a new force field (FF) to simulate transport properties of imidazolium-based room-temperature ionic liquids (RTILs) using a solid physical background. In the present work, we apply this FF to derive thermodynamic, structure, and transport properties of the mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate, [BMIM][BF(4)], and acetonitrile (ACN) over the whole composition range. Three approaches to derive a force field are formulated based on different treatments of the ion-ion and ion-molecule Coulomb interactions: unit-charge, scaled-charge and floating-charge approaches. The simulation results are justified with the help of experimental data on specific density and shear viscosity for these mixtures. We find that a phenomenological account (particularly, a simple scaled-charge model) of electronic polarization leads to the best-performing model. Remarkably, its validity does not depend on the molar fraction of [BMIM][BF(4)] in the mixture. The derived FF is so far the first molecular model which is able to simulate all transport properties of the mixtures, comprising RTIL and ACN, fully realistically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call