Abstract
We present a new tert-butanol force field parametrized to reproduce the mixture thermodynamics of tert-butanol/water over a wide range of solution compositions at room temperature and atmospheric pressure. The experimental Kirkwood-Buff integrals, which quantify preferential solvation of solution components by the same species or by the other components, were used as target values to be reproduced. Water was modeled using the simple point charge model. In the range of alcohol mole fractions between 0.02 and 0.98, our optimized model satisfactorily reproduces alcohol-alcohol, water-water, and alcohol-water aggregation behavior. As a consequence, the solution activity derivatives are reproduced as well. A comparison has been made with solution activities obtained by free energy calculations (i.e., thermodynamic integration). It clearly shows that the Kirkwood-Buff based approach performs superior in predicting solution activities of liquid mixtures. The new tert-butanol model has been used to examine the solution structure and hydrophobic interactions in aqueous tert-butanol at the various mixture compositions. A comparison is made with structural data obtained by neutron diffraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.