Abstract

A foaming technique was developed for production of superabsorbent polymers (SAP) from carboxymethyl chitosan (CMCS) with high, medium and low molecular weights. In this method n -pentane was used as a blowing agent due to low boiling point and immiscibility with water. n -Pentane was added to a warm aqueous solution of CMCS and boiled. CMCS was then gelled by adding the crosslinking agent glutaraldehyde and consequently n -pentane was captured inside the polymer network. The n -pentane was evaporated from this network while drying in oven. It resulted in stable foam that prevented the hydrogel from collapsing and the dried product had a porous structure with a high water-binding capacity (WBC). The effects of molecular weight of CMCS and its concentration, and the amounts of glutaraldehyde and n -pentane used, on WBC were investigated and optimized using response surface experimental design. The best result for WBC of foam-dried SAP was 107 (g/g) after exposing for 1 h in pure water and 60 (g/g) and 37 (g/g) after exposing for one min in pure water and 0.9% NaCl solution, respectively. The WBC of the SAP produced by the foaming technique was more than five times higher than the WBC of the oven-dried crosslinked CMCS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.