Abstract

This work proposes a modified version of an emerging nature-inspired technique, named flower pollination algorithm, for equalizing digital multiuser channels. This equalization involves two different tasks: (1) estimation of the channel impulse response, and (2) estimation of the users’ transmitted symbols. The new algorithm is developed and applied in a direct sequence/code-division multiple-access multiuser communications system. Important issues such as robustness, convergence speed and population diversity control have been in deep investigated. A method based on the entropy of the flowers’ fitness is proposed for in-service monitoring and adjusting population diversity. Numerical simulations analyze the performance, showing comparisons with well-known conventional multiuser detectors such as matched filter, minimum mean square error estimator or several Bayesian schemes, as well as with other nature-inspired strategies. Numerical analysis shows that the proposed algorithm enables transmission at higher symbol rates under stronger fading and interference conditions, constituting an attractive alternative to previous algorithms, both conventional and nature-inspired, whose performance is frequently sensible to near–far effects and multiple-access interference problems. These results have been validated by running hypothesis tests to confirm statistical significance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.