Abstract

We present the discovery of a new optical/X-ray source likely associated with the Fermi γ-ray source 4FGL J1408.6–2917. Its high-amplitude periodic optical variability, large spectroscopic radial-velocity semiamplitude, evidence for optical emission lines and flaring, and X-ray properties together imply the source is probably a new black widow millisecond pulsar binary. We compile the properties of the 41 confirmed and suspected field black widows, finding a median secondary mass of 0.027 ± 0.003 M ⊙. Considered jointly with the more massive redback millisecond pulsar binaries, we find that the “spider” companion mass distribution remains strongly bimodal, with essentially zero systems having companion masses of between ∼0.07 and 0.1 M ⊙. X-ray emission from black widows is typically softer and less luminous than in redbacks, consistent with less efficient particle acceleration in the intrabinary shock in black widows, excepting a few systems that appear to have more efficient “redback-like” shocks. Together black widows and redbacks dominate the census of the fastest spinning field millisecond pulsars in binaries with known companion types, making up ≳80% of systems with P spin < 2 ms. Similar to redbacks, the neutron star masses in black widows appear on average significantly larger than the canonical 1.4 M ⊙, and many of the highest-mass neutron stars claimed to date are black widows with M NS ≳ 2.1 M ⊙. Both of these observations are consistent with an evolutionary picture where spider millisecond pulsars emerge from short orbital period progenitors that had a lengthy period of mass transfer initiated while the companion was on the main sequence, leading to fast spins and high masses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call