Abstract

This paper investigates the finite-time trajectory tracking control problem for rigid robotic manipulators. The objective is to control all the links of rigid manipulators to converge into the desired form of motion in a finite time respectively. Based on the finite-time control technique, a new motion tracking control law, which is suitable for a class of rigid manipulators with model uncertainties and external disturbances, is proposed using the fast terminal sliding mode control (FTSMC) scheme. The proposed method can drive the system states reach zero without requiring the explicit dynamic model. Rigorous proof is given by using Lyapunov and matrix theory. Simulation results are presented to validate the effectiveness of our theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.