Abstract

This article’s main scope is the presentation of a computational method for the simulation of contact problems within the finite element method involving complex and rough surfaces. The approach relies on the MPJR (eMbedded Profile for Joint Roughness) interface finite element proposed in [Paggi, M., Reinoso, J., 2020. Mech. Adv. Mater. Struct. 27:1731–1747], which is nominally flat but can embed at the nodal level any arbitrary height to reconstruct the displacement field due to contact in the presence of roughness. Here, the formulation is generalized to handle 3D surface height fields and any arbitrary nonlinear interface constitutive relation, including friction and adhesion. The methodology is herein validated with BEM solutions for linear elastic contact problems. Then, a selection of nonlinear contact problems prohibitive to be simulated by BEM and by standard contact algorithms in FEM are detailed, to highlight the promising aspects of the proposed method for tribology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call