Abstract

PremiseHerbarium specimens represent an outstanding source of material with which to study plant phenological changes in response to climate change. The fine‐scale phenological annotation of such specimens is nevertheless highly time consuming and requires substantial human investment and expertise, which are difficult to rapidly mobilize.MethodsWe trained and evaluated new deep learning models to automate the detection, segmentation, and classification of four reproductive structures of Streptanthus tortuosus (flower buds, flowers, immature fruits, and mature fruits). We used a training data set of 21 digitized herbarium sheets for which the position and outlines of 1036 reproductive structures were annotated manually. We adjusted the hyperparameters of a mask R‐CNN (regional convolutional neural network) to this specific task and evaluated the resulting trained models for their ability to count reproductive structures and estimate their size.ResultsThe main outcome of our study is that the performance of detection and segmentation can vary significantly with: (i) the type of annotations used for training, (ii) the type of reproductive structures, and (iii) the size of the reproductive structures. In the case of Streptanthus tortuosus, the method can provide quite accurate estimates (77.9% of cases) of the number of reproductive structures, which is better estimated for flowers than for immature fruits and buds. The size estimation results are also encouraging, showing a difference of only a few millimeters between the predicted and actual sizes of buds and flowers.DiscussionThis method has great potential for automating the analysis of reproductive structures in high‐resolution images of herbarium sheets. Deeper investigations regarding the taxonomic scalability of this approach and its potential improvement will be conducted in future work.

Highlights

  • Title A new fine-grained method for automated visual analysis of herbarium specimens: A case study for phenological data extraction

  • The main outcome of our study is that the performance of detection and segmentation can vary significantly with: (i) the type of annotations used for training, (ii) the type of reproductive structures, and (iii) the size of the reproductive structures

  • In the case of Streptanthus tortuosus, the method can provide quite accurate estimates (77.9% of cases) of the number of reproductive structures, which is better estimated for flowers than for immature fruits and buds

Read more

Summary

Introduction

Title A new fine-grained method for automated visual analysis of herbarium specimens: A case study for phenological data extraction. A new fine-grained method for automated visual analysis of herbarium specimens: A case study for phenological data extraction. PREMISE: Herbarium specimens represent an outstanding source of material with which to study plant phenological changes in response to climate change. The fine-scale phenological annotation of such specimens is highly time consuming and requires substantial human investment and expertise, which are difficult to rapidly mobilize

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.