Abstract

Fault type classification is a critical stage in modern distance relays for activating the effective phase and ground distance elements. It is also used for some supplementary functions such as single-pole tripping and reclosing, teleprotection, and fault location. Traditional fault type classifiers are based on the symmetrical or superimposed components of the current signal. However, owing to the unconventional behavior of inverter-based resources (IBRs) compared to the synchronous generators, traditional methods are not reliable in the presence of IBRs. For example, modern grid codes impose some restrictions in terms of injected current during asymmetrical fault which put the accuracy of conventional fault classification methods in danger. Fault resistance could also affect the accuracy of fault type classification method. In this paper, first, the fault current signature of IBRs is analytically derived. Then, impacts of modern grid code and fault resistance on the conventional fault classification are properly evaluated by executing some simulation studies. Finally, a new fault classifier is proposed which is based on symmetrical components of the local voltage and current during asymmetrical faults. The proposed classifier presents a satisfactory degree of security in the faulted phase identification in the presence of IBRs under different host grid codes. Performance of the proposed method is properly analysed with different simulation scenarios such as different fault locations, fault resistances, pre-fault condition, test systems, and host grid codes in PSCAD/EMTDC software.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call