Abstract

Optical burst switching (OBS) has been proposed as a promising technique to support high-bandwidth, bursty data traffic in the next-generation optical Internet. This study investigates a new fault-management framework for an OBS network. In an OBS network, burst-loss performance is a critical concern. In OBS, the data-burst transmission is delayed by an offset time (relative to its burst control packet (BCP), or header), and the burst follows its header without waiting for an acknowledgment for resource reservation. Thus, a burst may be lost at an intermediate node due to contention, which is generally resolved according to the local routing and bandwidth information. The routing table maintained in each OBS node is generally pre-computed and fixed to forward the data bursts. Such a static forwarding feature might have limited efficiency to resolve contentions. Moreover, a burst may be lost and the network may be congested when a network element (e.g., fiber link) fails. Therefore, for reliable burst transport, we develop dynamic routing approaches for preplanned congestion avoidance. Our goal is to proactively avoid congestion during the route-computation process, and our approach employs wavelength-channel utilization, traffic distribution, and link-distance information in the proposed objective functions for routing. Two update mechanisms for maintaining a dynamic routing table are presented to accommodate bursty data traffic. Based on our routing mechanisms, we also propose a new congestion-avoidance-and-protection (CAP) approach, which employs a primary route and a group of backup routes for each node pair against failures and congestion. The performance of the proposed protection strategy using congestion-avoidance routing is demonstrated to be promising through illustrative numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call