Abstract

This paper proposes a new impedance-based technique to locate all fault types in distribution networks with/without distributed generators. A new procedure to form an impedance matrix using only series impedances of the distribution lines is introduced. The impedance matrix along with the prefault and during-fault voltage phasors at few buses is used to estimate the injection fault current via the least-squares technique. Linear least-squares estimator is utilized if microphasor measurement units ${({\mu} \rm{PMUs)}}$ are installed along the network. However, a nonlinear least-squares problem solved by the trust-region-reflective algorithm is used when only the voltage magnitudes are provided by smart meters. The operation of the standard protective devices in the distribution networks is used to reduce the computational burden of the proposed method. Also, a generalized measurement placement algorithm is studied using the discovered features of the impedance matrix. In addition, the Sobol's sensitivity analysis is conducted to quantify the importance of different input factors on the fault location accuracy. The effectiveness of the proposed method is validated on a real 134-bus, 13.8 kV distribution network under several fault scenarios and noisy measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call