Abstract
Ultrasound B-mode imaging provides anatomical images of the body with a high resolution and frame rate. Recently, to improve its flexibility, most ultrasound signal and image processing modules in modern ultrasound B-mode imaging systems have been implemented in software. In a software-based B-mode imaging system, an efficient processing technique for calculating a logarithm instruction is required to support its high computational burden. In this paper, we present a new method to efficiently implement a logarithm operation based on exponent bit extraction. In the proposed method, the exponent bit field is first extracted and then some algebraic operations are applied to improve its precision. To evaluate the performance of the proposed method, the peak signal-to-noise ratio (PSNR) and the execution time were measured. The proposed efficient logarithm operation method substantially reduced the execution time, i.e., eight times, compared to direct computation while providing a PSNR of over 50 dB. These results indicate that the proposed efficient logarithm computation method can be used for lowering the computational burden in software-based ultrasound B-mode ultrasound imaging systems while improving or maintaining the image quality.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.