Abstract
Bidirectional multicast mechanisms are used to support multi-point to multi-point (MP2MP) traffic such as video-conferencing. These mechanisms are deployed today in multi-protocol label switching (MPLS) networks using the connectionless mode in which traffic engineering (TE) features such as bandwidth reservation and fast reroute in case of link and/or node failure are not defined. Indeed, TE procedures are defined in MPLS for unicast and multicast point-to-multipoint (P2MP) traffic only. Hence, MP2MP traffic that requires TE procedures is carried out using a full mesh of P2P or P2MP paths. Similarly, a full mesh of P2P and P2MP backup paths should be predefined in order to fast reroute traffic in case of a node failure. This leads to a major scalability problem since MPLS TE paths incur heavy overhead burden on MPLS nodes (CPU and memory). In this paper, we emphasize on fast reroute procedures using MP2MP TE paths. In particular, we define the control plane procedures that should be established. In addition, we present a simulation study that demonstrates the scalability amelioration when using MP2MP TE paths for fast rerouting instead of full mesh P2P and/or P2MP paths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.