Abstract

Respiratory gating in PET is an approach used to minimize the negative effects of respiratory motion on spatial resolution. It is based on an initial determination of a patient's respiratory movements during a scan, typically using hardware based systems. In recent years, several fully automated databased algorithms have been presented for extracting a respiratory signal directly from PET data, providing a very practical strategy for implementing gating in the clinic. In this work, a new method is presented for extracting a respiratory signal from raw PET sinogram data and compared to previously presented automated techniques. The acquisition of respiratory signal from PET data in the newly proposed method is based on rebinning the sinogram data into smaller data structures and then analyzing the time activity behavior in the elements of these structures. From this analysis, a 1D respiratory trace is produced, analogous to a hardware derived respiratory trace. To assess the accuracy of this fully automated method, respiratory signal was extracted from a collection of 22 clinical FDG-PET scans using this method, and compared to signal derived from several other software based methods as well as a signal derived from a hardware system. The method presented required approximately 9 min of processing time for each 10 min scan (using a single 2.67 GHz processor), which in theory can be accomplished while the scan is being acquired and therefore allowing a real-time respiratory signal acquisition. Using the mean correlation between the software based and hardware based respiratory traces, the optimal parameters were determined for the presented algorithm. The mean/median/range of correlations for the set of scans when using the optimal parameters was found to be 0.58/0.68/0.07-0.86. The speed of this method was within the range of real-time while the accuracy surpassed the most accurate of the previously presented algorithms. PET data inherently contains information about patient motion; information that is not currently being utilized. We have shown that a respiratory signal can be extracted from raw PET data in potentially real-time and in a fully automated manner. This signal correlates well with hardware based signal for a large percentage of scans, and avoids the efforts and complications associated with hardware. The proposed method to extract a respiratory signal can be implemented on existing scanners and, if properly integrated, can be applied without changes to routine clinical procedures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.