Abstract
Interpolation by polynomials on equispaced points is not always convergent due to the Runge phenomenon, and also, the interpolation process is exponentially ill-conditioned. By taking advantage of the optimality of the interpolation processes on the Chebyshev-Lobatto nodes, one of the best strategies to defeat the Runge phenomenon is to use the mock-Chebyshev nodes for polynomial interpolation. Mock-Chebyshev nodes asymptotically follow the Chebyshev distribution, and they are selected from a sufficiently large set of equispaced nodes. However, there are few studies in the literature regarding the computation of these points.In a recent paper [1], we have introduced a fast algorithm for computing the mock-Chebyshev nodes for a given set of (n+1) Chebyshev-Lobatto points using the distance between each pair of consecutive points. In this study, we propose a modification of the algorithm by changing the function to compute the quotient of the distance and show that this modified algorithm is also fast and stable; and gives a more accurate grid satisfying the conditions of a mock-Chebyshev grid with the complexity being O(n). Some numerical experiments using the points obtained by this modified algorithm are given to show its effectiveness and numerical results are also provided. A bivariate generalization of the mock-Chebyshev nodes to the Padua interpolation points is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.